

Monitoring and prevention of insect pests in teak plantations

Assoc. Prof. Dr. Decha Wiwatwitaya

Department of Forest Biology, Faculty of Forestry, Kasetsart University, Thailand ffordew@ku.ac.th

Teak plantations

O Wood volumeO Carbon sequestration

Good wood quality

Diversity of insect pests

- O Nearly 294 insects on teak (Beeson, 1941)
- O 196 species in India
- O More than 70 species in Thailand
- A minority is key pests (2-3 species)
- Mostly it is minor pests

Types of damages

- Foliage feeders
- Sap feeders
- Stem and branch borers
- **O** Bark feeders
- **O** Root feeders

Foliage feeders

Hyblaea pueraEutectona macharalis

Reduced growth

defoliator

-Outbreak

-Bio-control and microbial control

skeletonizer

Root feeders

O White grubO Termite

seedling

Stem borers

Teak beehole borer (xyleutes ceramica) > TBB
Zeuzera coffeae Nietner (Cossidae)
Acalolepta cervinus

Teak beehole borer (xyleutes ceramica)

- Some teak plantations are found to be 100 percent.
- Teaks are destroyed when they are 2 years old and have a diameter of 4 cm.
- Wood volume prices are down 30-60 percent.

General information

- Life cycle of 1-2 years
- Lays more than 12,000 eggs per female
- The highest mortality rate of larvae occurs at 4–6 weeks of age.
- When the larvae have bored into the wood, the mortality rate is very low, around 0.001 – 0.02 %
- Only 1% of larvae can bore into the stem.
- Wood damage is cumulative until rotation (30yrs).
- Still can't be controlled effectively

Life cycle

Larvae stages

Symbol

2nd instar

Entry and exit holes

Few sawdust

Few sawdus

ry and exit holes

Mid-inner bark

Symbol

Entry and exit holes

The hole gets bigger

Sapwood

Heartwood

Sawdust to dry

New adult

The pupa is still on the stem.

The immatures lives in the teak trunk as a larvae and pupa. The larvae feed on the callus tissue, which is produced from the inner bark of the teak tree.

Precise control ?

- Refers to the guidelines for selecting methods that are appropriate for the growth stages (TBB) and the position (Teak) in which one lives at that time.
- O Currently, teak plantations have used this method to control TBB and have seen clear results in teak trees that are 2-10 years old, causing the TBB population to decrease within 5 years if the practices are continuous.

Information

Teak plantations should be 2-10 years old.

Methods for precise control

Examples:

- Using a knife to cut bark areas for 1st 2nd instar
- O Using hard wire to insert into the hole for 3rd 5th instar
- Using bio-control for egg, 4th 5th instar, pupae, adult
- O Using forest fire for egg, 1st instar, adult
- O Using light trap for adult
- Other methods suitable for different position and growth stages

Example: Growth stages

stages	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan
egg													
1 st													
2 nd													
3 rd													
4 th													
5 th													
pupae					Wango	hin took	nlantatio	n Phrao I	arovinco				
adult					w ange		piantatio	u, 1 111 ac j	JIUVINCE				
stages	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan
egg													
1 st													
2 nd													
3 rd													
4 th													
5 th													
pupae													
adult					Mae Li	teak plai	ntation, L	unphun j	province				

Position:

Wangchin teak plantation, Phrae province

position	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan
bark													
sapwood													
heartwood													

Mae Li teak plantation, Lunphun province

positi on	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Νον	Dec	Jan
bark													
sapwood													
heartwood													

Future trends

- Global warming is causing more damage to both foliage feeders and stem borers.
- Teak plantations are likely to be destroyed more severely, especially wood.
- O Good quality wood will be less in quantity.
- Timber volume will decrease and loss of income will increase.
- So, intensive and continuous precise control should be carried out for 1-5 years in teak plantations that are 2-10 years old.

Thank you

